• The Taking of the Pelham 123 (1974)

    As the title suggests this is about the 1974 version of The Taking of the Pelham 123. Despite being almost 50 years old the movie is still more than enjoyable. It stars Robert Shaw and Walter Matthau as the bad guy and the good guy respectively in the simple plot of 4 gangsters hijacking a […]

    The Taking of the Pelham 123 (1974)
  • Privileged Men

    If today someone calls you privileged it may well be intended as an accusation or an insult. Nothing new and unfortunately seldom done with the literary flair of George Bernard Shaw who managed to ‘insult’ a couple of less privileged professions in the same go. “Greek scholars are privileged men. Few of them know Greek […]

    , ,
  • Royal Roads

    “O King, through the country, there are royal roads and roads for common citizens, but in geometry there is one road for all.” Menaechmus (4th century BC) in answer to his pupil Alexander the Great asking for a shortcut to geometry.

    , , ,
  • Familiar Words From 1974

    I started reading {a history of} π again yesterday. I read this some 12 years ago but wanted to read it again as I am going through some algebra fundamentals helping my daughter with her math exams. Almost 50 years ago, in the preface to the third edition from 1974 author Petr Beckmann wrote the […]

  • Hummingbird

    Hummingbird is a 2013 movie with Jason Statham. In the US it was released with the alternative title Redemption. Statham plays Joey Jones an ex special forces soldier with a history. After his patrol is ambushed in Afghanistan and 5 of his comrades are killed he takes revenge by killing 5 random ‘suspects’. He deserts […]

    Hummingbird
  • Bombelli’s Methode om Vierkantswortels te Berekenen

    De Italiaanse wiskundige Rafael Bombelli bedacht in de 16de eeuw een methode om vierkantswortels te berekenen met een recursieve methode. Als we √n willen berekenen zoeken we een getal a ± r waarvoor n = (a ± r)2 met a een geheel getal en 0 < r < 1. n ligt hierbij tussen de kwadraten […]

  • Wondrous Arithmetic : Division

    Remember having to divide numbers by hand ? If you have a rational number you can move from fractional form (a/b) to decimal form and back. Going from fractional to decimal form is done by performing the long division method. Going the other way is done using a ‘trick’. Any rational number written in decimal […]

  • Volkomen Kwadraten en Irrationale Getallen

    Een irrationaal getal is een reëel dat niet kan geschreven worden als a/b met a ∈ ℤ (een geheel getal) en b ∈ ℤ0 (een natuurlijk getal). Een getal is een volkomen kwadraat als het het kwadraat is van een geheel getal. Een paar voorbeelden zijn 1, 4, 16 etcetera. Een ‘interessante’ eigenschap van volkomen […]

  • Perfect Squares & Irrational Numbers

    An irrational number is a real number that cannot written in the form a/b with a ∈ ℤ (a whole number) and b ∈ ℤ0 (a natural number or whole number excluding 0). A number is a perfect square if it is the square of a whole number. A few examples are 1, 4, 16 […]

  • Wondrous Arithmetic

    Here at home we just had exams again and I helped my daughter preparing for her math exam. We started doing this during the 2020 lock down and we have continued since then. Surprisingly enough I still know most of the math I got in high school more than 30 years ago. This is in […]